Перевод: с английского на все языки

со всех языков на английский

naturalized American citizen

  • 1 naturalized (American) citizen

    Дипломатический термин: натурализованный (американский) гражданин

    Универсальный англо-русский словарь > naturalized (American) citizen

  • 2 naturalized American citizen

    Универсальный англо-русский словарь > naturalized American citizen

  • 3 naturalized American citizen

    English-Russian dictionary of regional studies > naturalized American citizen

  • 4 naturalized (American) citizen

    Англо-русский дипломатический словарь > naturalized (American) citizen

  • 5 naturalized (American) citizen

    English-russian dctionary of diplomacy > naturalized (American) citizen

  • 6 naturalized (American) citizen

    English-russian dctionary of diplomacy > naturalized (American) citizen

  • 7 citizen

    n
    1) гражданин; гражданка
    3) амер.
    a) гражданское лицо, штатский
    b) (гражданское) население (особ. достигшее избирательного возраста)
    ••

    English-russian dctionary of diplomacy > citizen

  • 8 naturalized

    'nætʃrəlaɪzd
    a) <citizen/American> naturalizado, nacionalizado
    b) (Bot, Zool) aclimatado
    ['nætʃǝrǝlaɪzd]
    ADJ (Brit) [citizen] naturalizado

    to become naturalized[person] naturalizarse; [plant, animal] aclimatarse, establecerse

    * * *
    ['nætʃrəlaɪzd]
    a) <citizen/American> naturalizado, nacionalizado
    b) (Bot, Zool) aclimatado

    English-spanish dictionary > naturalized

  • 9 naturalized citizen

    1) Юридический термин: гражданин по натурализации
    3) Дипломатический термин: (American) натурализованный (американский) гражданин

    Универсальный англо-русский словарь > naturalized citizen

  • 10 hyphenated American

    полит жарг
    "дефисник"
    Уничижительное прозвище натурализованного американца [ naturalized American citizen] иностранного происхождения. Впервые понятие использовал президент Т. Рузвельт [ Roosevelt, Theodore (Teddy)], который считал, что граждане страны должны быть прежде всего американцами. Ныне практически не используется, своими корнями в Америке принято гордиться (От дефиса в словах вроде Mexican-Americans, Italian-Americans).
    тж hyphenate

    English-Russian dictionary of regional studies > hyphenated American

  • 11 Lucas, Anthony Francis

    [br]
    b. 9 September 1855 Spalato, Dalmatia, Austria-Hungary (now Split, Croatia)
    d. 2 September 1921 Washington, DC, USA
    [br]
    Austrian (naturalized American) mining engineer who successfully applied rotary drilling to oil extraction.
    [br]
    A former Second Lieutenant of the Austrian navy (hence his later nickname "Captain") and graduate of the Polytechnic Institute of Graz, Lucas decided to stay in Michigan when he visited his relatives in 1879. He changed his original name, Lucie, into the form his uncle had adopted and became a naturalized American citizen at the age of 30. He worked in the lumber industry for some years and then became a consulting mechanical and mining engineer in Washington, DC. He began working for a salt-mining company in Louisiana in 1893 and became interested in the geology of the Mexican Gulf region, with a view to prospecting for petroleum. In the course of this work he came to the conclusion that the hills in this elevated area, being geological structures distinct from the surrounding deposits, were natural reservoirs of petroleum. To prove his unusual theory he subsequently chose Spindle Top, near Beaumont, Texas, where in 1899 he began to bore a first oil-well. A second drill-hole, started in October 1900, was put through clay and quicksand. After many difficulties, a layer of rock containing marine shells was reached. When the "gusher" came out on 10 January 1901, it not only opened up a new era in the oil and gas business, but it also led to the future exploration of the terrestrial crust.
    Lucas's boring was a breakthrough for the rotary drilling system, which was still in its early days although its principles had been established by the English engineer Robert Beart in his patent of 1884. It proved to have advantages over the pile-driving of pipes. A pipe with a simple cutter at the lower end was driven with a constantly revolving motion, grinding down on the bottom of the well, thus gouging and chipping its way downward. To deal with the quicksand he adopted the use of large and heavy casings successively telescoped one into the other. According to Fauvelle's method, water was forced through the pipe by means of a pump, so the well was kept full of circulating liquid during drilling, flushing up the mud. When the salt-rock was reached, a diamond drill was used to test the depth and the character of the deposit.
    When the well blew out and flowed freely he developed a preventer in order to save the oil and, even more importantly at the time, to shut the well and to control the oil flow. This assembly, patented in 1903, consisted of a combined system of pipes, valves and casings diverting the stream into a horizontal direction.
    Lucas's fame spread around the world, but as he had to relinquish the larger part of his interest to the oil company supporting the exploration, his financial reward was poor. One year after his success at Spindle Top he started oil exploration in Mexico, where he stayed until 1905, when he resumed his consulting practice in Washington, DC.
    [br]
    Bibliography
    1899, "Rock-salt in Louisiana", Transactions of the American Institution of Mining Engineers 29:462–74.
    1902, "The great oil-well near Beaumont, Texas", Transactions of the American
    Institution of Mining Engineers 31:362–74.
    Further Reading
    R.S.McBeth, 1918, Pioneering the Gulf Coast, New York (a very detailed description of Lucas's important accomplishments in the development of the oil industry).
    R.T.Hill, 1903, "The Beaumont oil-field, with notes on other oil-fields of the Texas region", Transactions of the American Institution of Mining Engineers 33:363–405;
    Transactions of the American Institution of Mining Engineers 55:421–3 (contain shorter biographical notes).
    WK

    Biographical history of technology > Lucas, Anthony Francis

  • 12 Ericsson, John

    [br]
    b. 31 July 1803 Farnebo, Sweden
    d. 8 March 1899 New York, USA
    [br]
    Swedish (naturalized American 1848) engineer and inventor.
    [br]
    The son of a mine owner and inspector, Ericsson's first education was private and haphazard. War with Russia disrupted the mines and the father secured a position on the Gotha Canal, then under construction. He enrolled John, then aged 13, and another son as cadets in a corps of military engineers engaged on the canal. There John was given a sound education and training in the physical sciences and engineering. At the age of 17 he decided to enlist in the Army, and on receiving a commission he was drafted to cartographic survey duties. After some years he decided that a career outside the Army offered him the best opportunities, and in 1826 he moved to London to pursue a career of mechanical invention.
    Ericsson first developed a heat (external combustion) engine, which proved unsuccessful. Three years later he designed and constructed the steam locomotive Novelty, which he entered in the Rainhill locomotive trials on the new Liverpool \& Manchester Railway. The engine began by performing promisingly, but it later broke down and failed to complete the test runs. Later he devised a self-regulating lead (1835) and then, more important and successful, he invented the screw propeller, patented in 1835 and installed in his first screw-propelled ship of 1839. This work was carried out independently of Sir Francis Pettit Smith, who contemporaneously developed a four-bladed propeller that was adopted by the British Admiralty. Ericsson saw that with screw propulsion the engine could be below the waterline, a distinct advantage in warships. He crossed the Atlantic to interest the American government in his ideas and became a naturalized citizen in 1848. He pioneered the gun turret for mounting heavy guns on board ship. Ericsson came into his own during the American Civil War, with the construction of the epoch-making warship Monitor, a screw-propelled ironclad with gun turret. This vessel demonstrated its powers in a signal victory at Hampton Roads on 9 March 1862.
    Ericsson continued to design warships and torpedoes, pointing out to President Lincoln that success in war would now depend on technological rather than numerical superiority. Meanwhile he continued to pursue his interest in heat engines, and from 1870 to 1888 he spent much of his time and resources in pursuing research into alternative energy sources, such as solar power, gravitation and tidal forces.
    [br]
    Further Reading
    W.C.Church, 1891, Life of John Ericsson, 2 vols, London.
    LRD

    Biographical history of technology > Ericsson, John

  • 13 Tesla, Nikola

    SUBJECT AREA: Electricity
    [br]
    b. 9 July 1856 Smiljan, Croatia
    d. 7 January 1943 New York, USA
    [br]
    Serbian (naturalized American) engineer and inventor of polyphase electrical power systems.
    [br]
    While at the technical institute in Graz, Austria, Tesla's attention was drawn to the desirability of constructing a motor without a commutator. He considered the sparking between the commutator and brushes of the Gramme machine when run as a motor a serious defect. In 1881 he went to Budapest to work on the telegraph system and while there conceived the principle of the rotating magnetic field, upon which all polyphase induction motors are based. In 1882 Tesla moved to Paris and joined the Continental Edison Company. After building a prototype of his motor he emigrated to the United States in 1884, becoming an American citizen in 1889. He left Edison and founded an independent concern, the Tesla Electric Company, to develop his inventions.
    The importance of Tesla's first patents, granted in 1888 for alternating-current machines, cannot be over-emphasized. They covered a complete polyphase system including an alternator and induction motor. Other patents included the polyphase transformer, synchronous motor and the star connection of three-phase machines. These were to become the basis of the whole of the modern electric power industry. The Westinghouse company purchased the patents and marketed Tesla motors, obtaining in 1893 the contract for the Niagara Falls two-phase alternators driven by 5,000 hp (3,700 kW) water turbines.
    After a short period with Westinghouse, Tesla resigned to continue his research into high-frequency and high-voltage phenomena using the Tesla coil, an air-cored transformer. He lectured in America and Europe on his high-frequency devices, enjoying a considerable international reputation. The name "tesla" has been given to the SI unit of magnetic-flux density. The induction motor became one of the greatest advances in the industrial application of electricity. A claim for priority of invention of the induction motor was made by protagonists of Galileo Ferraris (1847–1897), whose discovery of rotating magnetic fields produced by alternating currents was made independently of Tesla's. Ferraris demonstrated the phenomenon but neglected its exploitation to produce a practical motor. Tesla himself failed to reap more than a small return on his work and later became more interested in scientific achievement than commercial success, with his patents being infringed on a wide scale.
    [br]
    Principal Honours and Distinctions
    American Institute of Electrical Engineers Edison Medal 1917. Tesla received doctorates from fourteen universities.
    Bibliography
    1 May 1888, American patent no. 381,968 (initial patent for the three-phase induction motor).
    1956, Nikola Tesla, 1856–1943, Lectures, Patents, Articles, ed. L.I.Anderson, Belgrade (selected works, in English).
    1977, My Inventions, repub. Zagreb (autobiography).
    Further Reading
    M.Cheney, 1981, Tesla: Man Out of Time, New Jersey (a full biography). C.Mackechnie Jarvis, 1969, in IEE Electronics and Power 15:436–40 (a brief treatment).
    T.C.Martin, 1894, The Inventions, Researches and Writings of Nikola Tesla, New York (covers his early work on polyphase systems).
    GW

    Biographical history of technology > Tesla, Nikola

  • 14 Bell, Alexander Graham

    SUBJECT AREA: Telecommunications
    [br]
    b. 3 March 1847 Edinburgh, Scotland
    d. 3 August 1922 Beinn Bhreagh, Baddeck, Cape Breton Island, Nova Scotia, Canada
    [br]
    Scottish/American inventor of the telephone.
    [br]
    Bell's grandfather was a professor of elocution in London and his father an authority on the physiology of the voice and on elocution; Bell was to follow in their footsteps. He was educated in Edinburgh, leaving school at 13. In 1863 he went to Elgin, Morayshire, as a pupil teacher in elocution, with a year's break to study at Edinburgh University; it was in 1865, while still in Elgin, that he first conceived the idea of the electrical transmission of speech. He went as a master to Somersetshire College, Bath (now in Avon), and in 1867 he moved to London to assist his father, who had taken up the grandfather's work in elocution. In the same year, he matriculated at London University, studying anatomy and physiology, and also began teaching the deaf. He continued to pursue the studies that were to lead to the invention of the telephone. At this time he read Helmholtz's The Sensations of Tone, an important work on the theory of sound that was to exert a considerable influence on him.
    In 1870 he accompanied his parents when they emigrated to Canada. His work for the deaf gained fame in both Canada and the USA, and in 1873 he was apponted professor of vocal physiology and the mechanics of speech at Boston University, Massachusetts. There, he continued to work on his theory that sound wave vibrations could be converted into a fluctuating electric current, be sent along a wire and then be converted back into sound waves by means of a receiver. He approached the problem from the background of the theory of sound and voice production rather than from that of electrical science, and by 1875 he had succeeded in constructing a rough model. On 7 March 1876 Bell spoke the famous command to his assistant, "Mr Watson, come here, I want you": this was the first time a human voice had been transmitted along a wire. Only three days earlier, Bell's first patent for the telephone had been granted. Almost simultaneously, but quite independently, Elisha Gray had achieved a similar result. After a period of litigation, the US Supreme Court awarded Bell priority, although Gray's device was technically superior.
    In 1877, three years after becoming a naturalized US citizen, Bell married the deaf daughter of his first backer. In August of that year, they travelled to Europe to combine a honeymoon with promotion of the telephone. Bell's patent was possibly the most valuable ever issued, for it gave birth to what later became the world's largest private service organization, the Bell Telephone Company.
    Bell had other scientific and technological interests: he made improvements in telegraphy and in Edison's gramophone, and he also developed a keen interest in aeronautics, working on Curtiss's flying machine. Bell founded the celebrated periodical Science.
    [br]
    Principal Honours and Distinctions
    Legion of Honour; Hughes Medal, Royal Society, 1913.
    Further Reading
    Obituary, 7 August 1922, The Times. Dictionary of American Biography.
    R.Burlingame, 1964, Out of Silence into Sound, London: Macmillan.
    LRD

    Biographical history of technology > Bell, Alexander Graham

  • 15 Berliner, Emile

    SUBJECT AREA: Recording
    [br]
    b. 20 May 1851 Hannover, Germany
    d. 3 August 1929 Montreal, Canada
    [br]
    German (naturalized American) inventor, developer of the disc record and lateral mechanical replay.
    [br]
    After arriving in the USA in 1870 and becoming an American citizen, Berliner worked as a dry-goods clerk in Washington, DC, and for a period studied electricity at Cooper Union for the Advancement of Science and Art, New York. He invented an improved microphone and set up his own experimental laboratory in Washington, DC. He developed a microphone for telephone use and sold the rights to the Bell Telephone Company. Subsequently he was put in charge of their laboratory, remaining in that position for eight years. In 1881 Berliner, with his brothers Joseph and Jacob, founded the J.Berliner Telephonfabrik in Hanover, the first factory in Europe specializing in telephone equipment.
    Inspired by the development work performed by T.A. Edison and in the Volta Laboratory (see C.S. Tainter), he analysed the existing processes for recording and reproducing sound and in 1887 developed a process for transferring lateral undulations scratched in soot into an etched groove that would make a needle and diaphragm vibrate. Using what may be regarded as a combination of the Phonautograph of Léon Scott de Martinville and the photo-engraving suggested by Charles Cros, in May 1887 he thus demonstrated the practicability of the laterally recorded groove. He termed the apparatus "Gramophone". In November 1887 he applied the principle to a glass disc and obtained an inwardly spiralling, modulated groove in copper and zinc. In March 1888 he took the radical step of scratching the lateral vibrations directly onto a rotating zinc disc, the surface of which was protected, and the subsequent etching created the groove. Using well-known principles of printing-plate manufacture, he developed processes for duplication by making a negative mould from which positive copies could be pressed in a thermoplastic compound. Toy gramophones were manufactured in Germany from 1889 and from 1892–3 Berliner manufactured both records and gramophones in the USA. The gramophones were hand-cranked at first, but from 1896 were based on a new design by E.R. Johnson. In 1897–8 Berliner spread his activities to England and Germany, setting up a European pressing plant in the telephone factory in Hanover, and in 1899 a Canadian company was formed. Various court cases over patents removed Berliner from direct running of the reconstructed companies, but he retained a major economic interest in E.R. Johnson's Victor Talking Machine Company. In later years Berliner became interested in aeronautics, in particular the autogiro principle. Applied acoustics was a continued interest, and a tile for controlling the acoustics of large halls was successfully developed in the 1920s.
    [br]
    Bibliography
    16 May 1888, Journal of the Franklin Institute 125 (6) (Lecture of 16 May 1888) (Berliner's early appreciation of his own work).
    1914, Three Addresses, privately printed (a history of sound recording). US patent no. 372,786 (basic photo-engraving principle).
    US patent no. 382,790 (scratching and etching).
    US patent no. 534,543 (hand-cranked gramophone).
    Further Reading
    R.Gelatt, 1977, The Fabulous Phonograph, London: Cassell (a well-researched history of reproducible sound which places Berliner's contribution in its correct perspective). J.R.Smart, 1985, "Emile Berliner and nineteenth-century disc recordings", in Wonderful
    Inventions, ed. Iris Newson, Washington, DC: Library of Congress, pp. 346–59 (provides a reliable account).
    O.Read and W.L.Welch, 1959, From Tin Foil to Stereo, Indianapolis: Howard W.Sams, pp. 119–35 (provides a vivid account, albeit with less precision).
    GB-N

    Biographical history of technology > Berliner, Emile

  • 16 Brunel, Sir Marc Isambard

    [br]
    b. 26 April 1769 Hacqueville, Normandy, France
    d. 12 December 1849 London, England
    [br]
    French (naturalized American) engineer of the first Thames Tunnel.
    [br]
    His mother died when he was 7 years old, a year later he went to college in Gisors and later to the Seminary of Sainte-Nicaise at Rouen. From 1786 to 1792 he followed a career in the French navy as a junior officer. In Rouen he met Sophie Kingdom, daughter of a British Navy contractor, whom he was later to marry. In July 1793 Marc sailed for America from Le Havre. He was to remain there for six years, and became an American citizen, occupying himself as a land surveyor and as an architect. He became Chief Engineer to the City of New York. At General Hamilton's dinner table he learned that the British Navy used over 100,000 ship's blocks every year; this started him thinking how the manufacture of blocks could be mechanized. He roughed out a set of machines to do the job, resigned his post as Chief Engineer and sailed for England in February 1799.
    In London he was shortly introduced to Henry Maudslay, to whom he showed the drawings of his proposed machines and with whom he placed an order for their manufacture. The first machines were completed by mid-1803. Altogether Maudslay produced twenty-one machines for preparing the shells, sixteen for preparing the sheaves and eight other machines.
    In February 1809 he saw troops at Portsmouth returning from Corunna, the victors, with their lacerated feet bound in rags. He resolved to mechanize the production of boots for the Army and, within a few months, had twenty-four disabled soldiers working the machinery he had invented and installed near his Battersea sawmill. The plant could produce 400 pairs of boots and shoes a day, selling at between 9s. 6d. and 20s. a pair. One day in 1817 at Chatham dockyard he observed a piece of scrap keel timber, showing the ravages wrought by the shipworm, Teredo navalis, which, with its proboscis protected by two jagged concave triangular shells, consumes, digests and finally excretes the ship's timbers as it gnaws its way through them. The excreted material provided material for lining the walls of the tunnel the worm had drilled. Brunel decided to imitate the action of the shipworm on a large scale: the Thames Tunnel was to occupy Marc Brunel for most of the remainder of his life. Boring started in March 1825 and was completed by March 1843. The project lay dormant for long periods, but eventually the 1,200 ft (366 m)-long tunnel was completed. Marc Isambard Brunel died at the age of 80 and was buried at Kensal Green cemetery.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Vice-President, Royal Society 1832.
    Further Reading
    P.Clements, 1970, Marc Isambard Brunel, London: Longmans Green.
    IMcN

    Biographical history of technology > Brunel, Sir Marc Isambard

  • 17 Henson, William Samuel

    SUBJECT AREA: Aerospace
    [br]
    b. 3 May 1812 Nottingham, England
    d. 22 March 1888 New Jersey, USA
    [br]
    English (naturalized American) inventor who patented a design for an "aerial steam carriage" and combined with John Stringfellow to build model aeroplanes.
    [br]
    William Henson worked in the lacemaking industry and in his spare time invented many mechanical devices, from a breech-loading cannon to an ice-machine. It could be claimed that he invented the airliner, for in 1842 he prepared a patent (granted in 1843) for an "aerial steam carriage". The patent application was not just a vague outline, but contained detailed drawings of a large monoplane with an enclosed fuselage to accommodate the passengers and crew. It was to be powered by a steam engine driving two pusher propellers aft of the wing. Henson had followed the lead give by Sir George Cayley in his basic layout, but produced a very much more advanced structural design with cambered wings strengthened by streamlined bracing wires: the intended wing-span was 150 ft (46 m). Henson probably discussed the design of the steam engine and boiler with his friend John Stringfellow (who was also in the lacemaking industry). Stringfellow joined Henson and others to found the Aerial Transit Company, which was set up to raise the finance needed to build Henson's machine. A great publicity campaign was mounted with artists' impressions of the "aerial steam carriage" flying over London, India and even the pyramids. Passenger-carrying services to India and China were proposed, but the whole project was far too optimistic to attract support from financiers and the scheme foundered. Henson and Stringfellow drew up an agreement in December 1843 to construct models which would prove the feasibility of an "aerial machine". For the next five years they pursued this aim, with no real success. In 1848 Henson and his wife emigrated to the United States to further his career in textiles. He became an American citizen and died there at the age of 75.
    [br]
    Bibliography
    Henson's diary is preserved by the Institute of Aeronautical Sciences in the USA. Henson's patent of 1842–3 is reproduced in Balantyne and Pritchard (1956) and Davy (1931) (see below).
    Further Reading
    H.Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury.
    A.M.Balantyne and J.L.Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence; includes a reproduction of Henson's patent).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    JDS

    Biographical history of technology > Henson, William Samuel

  • 18 Szilard, Leo

    SUBJECT AREA: Weapons and armour
    [br]
    b. 11 February 1898 Budapest, Hungary
    d. 30 May 1964 La Jolla, California, USA
    [br]
    Hungarian (naturalized American in 1943) nuclear-and biophysicist.
    [br]
    The son of an engineer, Szilard, after service in the Austro-Hungarian army during the First World War, studied electrical engineering at the University of Berlin. Obtaining his doctorate there in 1922, he joined the faculty and concentrated his studies on thermodynamics. He later began to develop an interest in nuclear physics, and in 1933, shortly after Hitler came to power, Szilard emigrated to Britain because of his Jewish heritage.
    In 1934 he conceived the idea of a nuclear chain reaction through the breakdown of beryllium into helium and took out a British patent on it, but later realized that this process would not work. In 1937 he moved to the USA and continued his research at the University of Columbia, and the following year Hahn and Meitner discovered nuclear fission with uranium; this gave Szilard the breakthrough he needed. In 1939 he realized that a nuclear chain reaction could be produced through nuclear fission and that a weapon with many times the destructive power of the conventional high-explosive bomb could be produced. Only too aware of the progress being made by German nuclear scientists, he believed that it was essential that the USA should create an atomic bomb before Hitler. Consequently he drafted a letter to President Roosevelt that summer and, with two fellow Hungarian émigrés, persuaded Albert Einstein to sign it. The result was the setting up of the Uranium Committee.
    It was not, however, until December 1941 that active steps began to be taken to produce such a weapon and it was a further nine months before the project was properly co-ordinated under the umbrella of the Manhattan Project. In the meantime, Szilard moved to join Enrico Fermi at the University of Chicago and it was here, at the end of 1942, in a squash court under the football stadium, that they successfully developed the world's first self-sustaining nuclear reactor. Szilard, who became an American citizen in 1943, continued to work on the Manhattan Project. In 1945, however, when the Western Allies began to believe that only the atomic bomb could bring the war against Japan to an end, Szilard and a number of other Manhattan Project scientists objected that it would be immoral to use it against populated targets.
    Although he would continue to campaign against nuclear warfare for the rest of his life, Szilard now abandoned nuclear research. In 1946 he became Professor of Biophysics at the University of Chicago and devoted himself to experimental work on bacterial mutations and biochemical mechanisms, as well as theoretical research on ageing and memory.
    [br]
    Principal Honours and Distinctions
    Atoms for Peace award 1959.
    Further Reading
    Kosta Tsipis, 1985, Understanding Nuclear Weapons, London: Wildwood House, pp. 16–19, 26, 28, 32 (a brief account of his work on the atomic bomb).
    A collection of his correspondence and memories was brought out by Spencer Weart and Gertrud W.Szilard in 1978.
    CM

    Biographical history of technology > Szilard, Leo

  • 19 Yourkevitch, Vladimir Ivanovitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 17 June 1885 Moscow, Russia
    d. 14 December 1964 USA
    [br]
    Russian (naturalized American) naval architect who worked in Russia, Western Europe and the United States and who profoundly influenced the hull design of large ships.
    [br]
    Yourkevitch came from an academic family, but one without any experience or tradition of sea service. Despite this he decided to become a naval architect, and after secondary education at Moscow and engineering training at the St Petersburg Polytechnic, he graduated in 1909. For the following ten years he worked designing battleships and later submarines, mostly at the Baltic Shipyard in St Petersburg. Around 1910 he became a full member of the Russian Naval Constructors Corps, and in 1915 he was a founder member and first Scientific Secretary of the Society of Naval Engineers.
    Using the published data of the American Admiral D.W. Taylor and taking advantage of access to the Norddeutscher Lloyd Testing Tank at Bremerhaven, Yourkevitch proposed a new hull form with bulbous bow and long entrances and runs. This was the basis for the revolutionary battleships then laid down at St Petersburg, the "Borodino" class. Owing to the war these ships were launched but never completed. At the conclusion of the war Yourkevitch found himself in Constantinople, where he experienced the life of a refugee, and then he moved to Paris where he accepted almost any work on offer. Fortunately in 1928, through an introduction, he was appointed a draughtsman at the St Nazaire shipyard. Despite his relatively lowly position, he used all his personality to persuade the French company to alter the hull form of the future record breaker Normandie. The gamble paid off and Yourkevitch was able to set up his own naval architecture company, BECNY, which designed many well-known liners, including the French Pasteur.
    In 1939 he settled in North America, becoming a US citizen in 1945. On the night of the fire on the Normandie, he was in New York but was prevented from going close to the ship by the police, and the possibility of saving the ship was thrown away. He was involved in many projects as well as lecturing at Ann Arbor, Michigan, and at the Massachusetts Institute of Technology. He maintained connections with his technical colleagues in St Petersburg in the later years of his life. His unfulfilled dream was the creation of a superliner to carry 5,000 passengers and thus able to make dramatic cuts in the cost of transatlantic travel. Yourkevitch was a fine example of a man whose vision enabled him to serve science and engineering without consideration of inter-national boundaries.
    [br]
    Principal Honours and Distinctions
    AK/FMW

    Biographical history of technology > Yourkevitch, Vladimir Ivanovitch

  • 20 Poniatoff, Alexander Mathew

    [br]
    b. 25 March 1892 Kazan District, Russia
    d. 24 October 1980
    [br]
    Russian (naturalized American in 1932) electrical engineer responsible for the development of the professional tape recorder and the first commercially-successful video tape recorder (VTR).
    [br]
    Poniatoff was educated at the University of Kazan, the Imperial College in Moscow, and the Technische Hochschule in Karlsruhe, gaining degrees in mechanical and electrical engineering. He was in Germany when the First World War broke out, but he managed to escape back to Russia, where he served as an Air Force pilot with the Imperial Russian Navy. During the Russian Revolution he was a pilot with the White Russian Forces, and escaped into China in 1920; there he found work as an assistant engineer in the Shanghai Power Company. In 1927 he immigrated to the USA, becoming a US citizen in 1932. He obtained a post in the research and development department of the General Electric Company in Schenectady, New York, and later at Dalmo Victor, San Carlos, California. During the Second World War he was involved in the development of airborne radar for the US Navy.
    In 1944, taking his initials to form the title, Poniatoff founded the AMPEX Corporation to manufacture components for the airborne radar developed at General Electric, but in 1946 he turned to the production of audio tape recorders developed from the German wartime Telefunken Magnetophon machine (the first tape recorder in the truest sense). In this he was supported by the entertainer Bing Crosby, who needed high-quality replay facilities for broadcasting purposes, and in 1947 he was able to offer a professional-quality product and the business prospered.
    With the rapid post-war boom in television broadcasting in the USA, a need soon arose for a video recorder to provide "time-shifting" of live TV programmes between the different US time zones. Many companies therefore endeavoured to produce a video tape recorder (VTR) using the same single-track, fixed-head, longitudinal-scan system used for audio, but the very much higher bandwidth required involved an unacceptably high tape-speed. AMPEX attempted to solve the problem by using twelve parallel tracks and a machine was demonstrated in 1952, but it proved unsatisfactory.
    The development team, which included Charles Ginsburg and Ray Dolby, then devised a four-head transverse-scan system in which a quadruplex head rotating at 14,400 rpm was made to scan across the width of a 2 in. (5 cm) tape with a tape-to-head speed of the order of 160 ft/sec (about 110 mph; 49 m/sec or 176 km/h) but with a longitudinal tape speed of only 15 in./sec (0.38 m/sec). In this way, acceptable picture quality was obtained with an acceptable tape consumption. Following a public demonstration on 14 April 1956, commercial produc-tion of studio-quality machines began to revolutionize the production and distribution of TV programmes, and the perfecting of time-base correctors which could stabilize the signal timing to a few nanoseconds made colour VTRs a practical proposition. However, AMPEX did not rest on its laurels and in the face of emerging competition from helical scan machines, where the tracks are laid diagonally on the tape, the company was able to demonstrate its own helical machine in 1957. Another development was the Videofile system, in which 250,000 pages of facsimile could be recorded on a single tape, offering a new means of archiving information. By 1986, quadruplex VTRs were obsolete, but Poniatoff's role in making television recording possible deserves a place in history.
    Poniatoff was President of AMPEX Corporation until 1955 and then became Chairman of the Board, a position he held until 1970.
    [br]
    Further Reading
    A.Abrahamson, 1953, "A short history of television recording", Part I, JSMPTE 64:73; 1973, Part II, Journal of the Society of Motion Picture and Television Engineers, 82:188 (provides a fuller background).
    Audio Biographies, 1961, ed. G.A.Briggs, Wharfedale Wireless Works, pp. 255–61 (contains a few personal details about Poniatoff's escape from Germany to join the Russian Navy).
    E.Larsen, 1971, A History of Invention.
    Charles Ginsburg, 1981, "The horse or the cowboy. Getting television on tape", Journal of the Royal Television Society 18:11 (a brief account of the AMPEX VTR story).
    KF / GB-N

    Biographical history of technology > Poniatoff, Alexander Mathew

См. также в других словарях:

  • citizen — cit·i·zen n [Anglo French citezein, alteration of Old French citeien, from cité city] 1: a native or naturalized individual who owes allegiance to a government (as of a state or nation) and is entitled to the enjoyment of governmental protection… …   Law dictionary

  • naturalized — naturalize nat‧u‧ral‧ize [ˈnætʆrəlaɪz] also naturalise verb be naturalized if someone who was born outside the country they now live in is naturalized, they become a citizen of the country they are living in: • More than 100,000 immigrants were… …   Financial and business terms

  • Japanese American — Japanese Americans 日系アメリカ人(日系米国人) Nikkei Americajin(Nikkei Beikokujin) …   Wikipedia

  • citizen — 1 *inhabitant, resident, denizen Contrasted words: *stranger, outsider 2 Citizen, subject, national are comparable when denoting a person who is regarded as a member of a sovereign state, entitled to its protection, and subject to its laws.… …   New Dictionary of Synonyms

  • Filipino American — Infobox Ethnic group group = flagicon|Philippines flagicon|US Filipino American | caption = Notable Filipino Americans: Cristeta Comerford, Maj.Gen. Antonio Taguba, Veronica De La Cruz, and Allan Pineda poptime = 4,000,000cite web… …   Wikipedia

  • Indian American — Infobox Ethnic group group = flagicon|India Indian American flagicon|United States caption = Notable Indian Americans (left to right): ·Bobby Jindal·Kal Penn·M. Night Shyamalan·Sunita Williams poptime = 2,662,112 [… …   Wikipedia

  • Australian American — Infobox Ethnic group group = Australian American flagicon|Australiaflagicon|United States poptime = 60,965 popplace = California, Hawaii, New YorkAn Australian American is a naturalized American citizen with a significant relationship to… …   Wikipedia

  • List of Cuban American writers — This is a list of the most notable Cuban American writers. *Iván Acosta, playwright, works include El Super (movie version 1979) and Un cubiche en la luna (1989)Marc Zimmerman, U.S. Latino Literature: An Essay and Annotated Bibliography ,… …   Wikipedia

  • citizen — One who, under the Constitution and laws of the United States, or of a particular state, is a member of the political community, owing allegiance and being entitled to the enjoyment of full civil rights. All persons born or naturalized in the… …   Black's law dictionary

  • citizen — One who, under the Constitution and laws of the United States, or of a particular state, is a member of the political community, owing allegiance and being entitled to the enjoyment of full civil rights. All persons born or naturalized in the… …   Black's law dictionary

  • citizen — Synonyms and related words: burgess, burgher, citizen by adoption, civilian, cosmopolitan, cosmopolite, deditician, denizen, dweller, franklin, free citizen, freedman, freedwoman, freeman, freewoman, householder, hyphenate, hyphenated American,… …   Moby Thesaurus

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»